เซต ม.4 | สับเซต
สับเซต (Subset)
ถ้าสมาชิกทุกตัวของ A เป็นสมาชิกของ B แล้ว จะเรียกว่า A เป็นสับเซตของ B จะเขียนว่า
เซต A เป็นสับเซตของเซต B แทนด้วย A ⊂ B
ถ้าสมาชิกบางตัวของ A ไม่เป็นสมาชิกของ B จะเรียกว่า A ไม่เป็นสับเซตของ B
เซต A ไม่เป็นสับเซตของเซต B แทนด้วย A ⊄ B
สมบัติของสับเซต
1) A ⊂ A (เซตทุกเซตเป็นสับเซตของตัวมันเอง)
2) A ⊂ U (เซตทุกเซตเป็นสับเซตของเอกภพสัมพัทธ์)
3) ø ⊂ A (เซตว่างเป็นสับเซตของทุกๆ เซต)
4) ถ้า A ⊂ ø แล้ว A = ø
5) ถ้า A ⊂ B และ B ⊂ C แล้ว A ⊂ C (สมบัติการถ่ายทอด)
6) A = B ก็ต่อเมื่อ A ⊂ B และ B ⊂ A
7) ถ้า A มีจำนวนสมาชิก n ตัว สับเซตของเซตจะมีทั้งสิ้น 2n สับเซต
สับเซตแท้
นิยาม A เป็นสับเซตแท้ของ B ก็ต่อเมื่อ A⊂B และ A ≠ B
ตัวอย่าง กำหนดให้ A = { a , b , c } จงหาสับเซตแท้ทั้งหมดของ A
วิธีทำ สับเซตแท้ของ A ได้แก่
ø, {a} , {b} ,{c} , {a,b} , {a ,c} , {b,c}
มีจำนวนสมาชิกทั้งสิ้น 7 สับเซต
หมายเหตุ ถ้า A มีจำนวนสมาชิก n ตัว สับเซตแท้ของเซตA จะมีทั้งสิ้น 2n –1 สับเซต